Seismic in Survey Education

Recessionary effects

- John Westwood's talk from IECO 2009
 - Clear dependence upon continued oil and gas
 - Evidence of temporary reductions in exploration
 - Expectation of return to recent levels
 - Clear need for major investment over thirty years

Demographics

- Andrea Windsor-Collins
 - Statistics applicable only to consultancy ...
 - Only 10% of marine and land seismic personnel under 40

UK land and hydro courses

- Plymouth
- London
- Nottingham
- Newcastle

Seismic exploration in context, i

- Geodesy
 - UK, European, Global examples
 - Metric, Footric
- GPS
 - Stand-alone, Differential, RTK, PPK
 - WAAS, EGNOS, MSAS
 - Glonass, Galileo, Compass

Seismic exploration in context, ii

- Water, seawater parameters
 - Physics, chemistry, sound, light
- Acoustics
 - Transmission characteristics, ranging
- Geology
- Electronics

Seismic exploration in context, iii

- Survey planning, the exploration and production cycle
- Health and safety
- Costing, tendering, qc, qa
- ... and so to seismic vessels, planning, navigating

Offshore and land seismics

- Plymouth
 - Offshore seismic industry dominates our teaching
 - Land survey intrinsic to our introductory teaching and revised later in the course
 - If fieldwork occurs at all, it is with a borrowed sub-bottom profiler in waters from 10 to 40 metres deep

External influences

FIG/IHO/ICA joint syllabus

E6.3 Marine geology and geophysics, i

Marine geology:

- Seabed samplers: grabs, corers and dredges
- Rock types and structure of the Earth

Geomorphology:

- Geomorphological structures and processes
- Effects on seabed topography, especially the continental shelf

E6.3 Marine geology and geophysics, ii

Earth's magnetic field:

 Magnetic field terms. Geomagnetic surveys and the use of magnetometers. Correction by observatory records.
Define polar reversals and anomalies.

Earth's internal structure:

Gravimetric terms. Gravity surveys. Gravimeters and the application of Eötvos correction

E6.3 Marine geology and geophysics, iii

Seismic profiling

- Continuous reflection/refraction seismic profiling
- Equipment: sound sources, receivers and recorders

Geotechnical sampling:

- The objective of geotechnical sampling
- Equipment
- Sampling, storage, analysis

Deposition and erosion:

Seabed material. Sediment transport and deposition, ...

Option 3: Offshore geophysical surveying, i

O3.1 Geomagnetic surveys

 Geomagnetic surveys principles; distinguish different aerial survey techniques and applications. Use magnetometer

O3.2 Gravity surveys

Gravity surveys and operations, both offshore and onshore.
Fundamentals of a gravimeter

O3.3 Digital seismic techniques

 Reflection, refraction, multiple fold profiling, 2D, 3D, high resolution shallow seismic, navigation processing for 3D seismic, integrated seismic network solutions, Kalman filtering. Specify and Plan Seismic Surveys

Option 3: Offshore geophysical surveying, ii

O3.4 Digital seismic data acquisition

 Acoustic sources, streamers, resolution, penetration, depth of tow, tail buoys and equipment tests for specific applications.
Appropriate equipment for seismic data acquisition

O3.5 Digital seismic data processing

 Basic techniques: stacking, migration, normal moveout, interpretation (conventional and computer-assisted) techniques to identify anomalies

O3.6 Analogue equipment

 Profilers: boomers, sparkers and chirp systems. Frequency and wavelength wrt resolution and penetration. Equipment for towing, launch and recovery. Coverage and penetration of systems and select equipment for appropriate applications

External influences

- IHO syllabus
- IMCA

IMCA Requirements, 2008

- Health, Safety and Environment
- Bathymetry
- Geology and Geophysics
- Computations
- Acoustics
- Land and Engineering Survey
- Data Management and Presentation
- Data bases
- Technical Report Writing

- Geodesy
- Oceanography
- Mathematics
- Surface Positioning
- Marine Survey Industry

- IT Skills
- Project Management

Marine Survey Industry

- Oil and gas industry
- Telecommunications industry
- Nautical/navigational charting
- Marine survey and exploration
- Seismic industry and techniques
- Offshore vessel types
- ROVs and AUVs
- Dredgers and rock dumpers

External influences

- IHO syllabus
- IMCA
- IMarEST
- RICS
- CICES
- The Hydrographic Society

Plymouth

Not a seismic vessel, but a vessel

Plymouth

Sampling;

Sub-bottom profiling

MSc Syllabus

- Methods in hydrography
- Positioning and geodesy
- Marine geophysical and acoustic sensing
- Oceanography and sedimentation
- Survey project management
- Integrated digital systems
- Industrial applications

Detail of half of offshore module

- EEZ Surveys
- Acoustic & Seismic Theory
- Azimuth & Orientation
- Side scan Sonar; theory and practice
- Principles of Swathe Sounding
- Sub-bottom Profiling
- Geophysical Surveys
- Exploration Seismics
- Swathe Sounding practicals on Catfish

France, Netherlands, Germany

KTP Project, WGP, Bude

- Government subsidised (NERC, DTI)
- 2 way flow of information and experience
 - Industrial level seismic experience
 - Establishment of GIS
- Interesting project
- Short course and consequential publicity
- Accreditation

Conclusion

- Originally employed with recent industrial experience
- Now a concentration on research ...
- Occasional forays afloat ...

Experience offshore, 2006

