Integrating Environmental and Geophysical/Geotechnical Surveys

24th March 2010 London

Presentation Layout

- Introduction
- Challenges to Integration
- Integration Rules
- Case Study EirGrid Interconnector
- Case Study Dunlin Environmental monitoring

Introduction

- Seabed investigations usually cover
 - Environmental conditions
 - Geophysical conditions
 - Geotechnical aspects
- Site investigation process involves
 - Planning and desktop study
 - Data acquisition
 - Data processing and interpretation

This session looks at how to get the most from seabed investigations by adopting an

integrated approach focusing on planning and thinking through the life cycle.

Introduction

- Deliverables from Seabed investigation process can feed across project life cycle into:
 - Environmental baseline for EIA
 - Basis of design for project infrastructure
 - Facilitate Front End Engineering Design (FEED)
 - Defining a baseline for environmental affects monitoring
 - Project planning and operational controls
 - Decommissioning planning
 - Satisfy marine contractors, investors and stakeholders
 - Marine warranty assessments

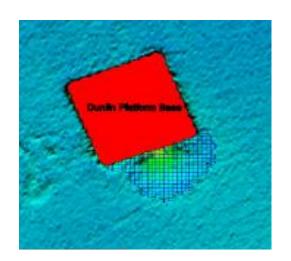
Challenges to Integration

- Project teams can sometimes work in isolation.
- Development of project definition out of step with survey schedules.
- Limited recognition of benefits by project team.
- Disconnect between engineering and environmental activities.
- Constraints to secure additional resource inputs (time-costs) at planning stage.

Integration "Rules"

- 1. A **cross-discipline dialogue** for shared seabed investigation objectives.
- 2. A **desktop study** against integrated outline requirements is key to planning.
- 3. Early **consultation with stakeholders** help understand their requirements and expectations.
- 4. Overall project life cycle seabed investigation plan in advance of developing scope of works for individual surveys.

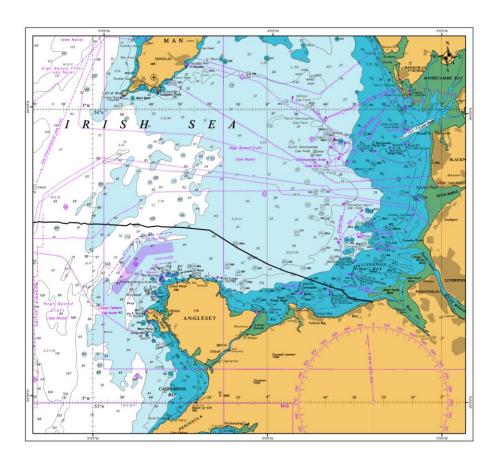
Case study – Greater Dunlin Area


Project overview

- Owned by Fairfield Energy Ltd & Mitsubishi
- Acquired from Shell in 2007
- Dunlin platform, Osprey & Merlin subsea tie-backs
- Long term environmental monitoring programme to inform future development and decommissioning strategy

Case study – Greater Dunlin Area

- Established baseline on acquisition
 - Desk-top study to collate existing data
- Established rolling list of specific information gaps e.g.,
 - Extent and change of drill cuttings piles
 - Lack of repeat environmental baseline surveys
 - Biological recovery after disturbance
 - Sediment contamination


Case study – Greater Dunlin Area

- Facilitated communication across project team
 - Guidelines for commissioning survey activities integrating project specific and long-term strategic requirements
 - Guidelines for third party tie-in contracts
 - Standard technical survey specifications incorporating environmental component
- Facilitated data sharing and development planning
 - Geospatial database of historic data

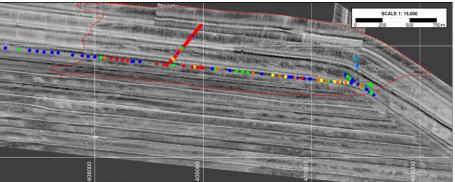
Integration "Rules"

- Specifying data deliverables into tender packages help achieve maximum data utility (e.g. GIS).
- 6. Proactively decide how much contract flexibility needed: scope uncertainty, sensitivity uncertainty, weather uncertainty, compliance/design requirements.
- 7. Advance planning of Client Representative (CR) skills for integrated surveys.
- 8. Project recognition that deliverables from seabed investigations contribute directly into asset value across project life cycle.

Case study – EirGrid Interconnector

Project overview

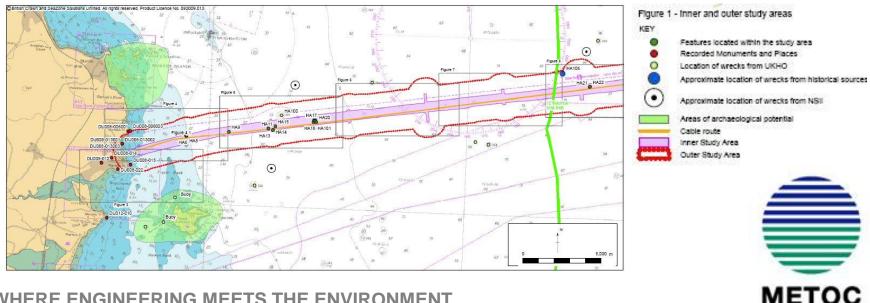
- HVDC Interconnector cable
- Ireland Wales
- Bi-directional cable
- 500 MW capacity
- Need case
 - Security of supply
 - Promotion of competition
 - Facilitates offshore wind development



Case study – EirGrid Interconnector

Benthic ecology

- Habitat survey
 - Sidescan sonar; Grab samples;
 Seabed photography
- Survey encountered an extensive biogenic reef (mussel bed)
 - Decision to widen survey swathe taken on the vessel
 - Feasible route established avoiding impact on the reef area
 - Use of JNCC "reefiness" criteria
- Consultation with CCW and JNCC
- Successful project consent without the need to re-survey



Case study — EirGrid Interconnector

- Marine Archaeology
 - Data deliverables
 - Data needs to be provided in a format that can be assessed by an archaeologist for features of interest – wrecks, peat layers, evidence of prehistoric landscapes etc
 - Survey specifications
 - Different approach of UK and Irish Regulator
 - Underwater Archaeology Unit (Ireland) defined specific equipment, specifications and parameters
 - Early consultation with regulators essential

Integration "Rules"

- 1. Cross-discipline dialogue
- 2. Desktop study
- 3. Early consultation with stakeholders
- 4. Overall project life cycle seabed investigation plan
- 5. Specifying data deliverables into tender packages
- 6. Proactively decide how much contract flexibility needed:
- 7. Advance planning of Client Representative (CR) skills
- 8. Project recognition survey data contribution into asset value across project life cycle.

Any Questions?

